School of Environment and Sustainability
Permanent URI for this community
Browse
Browsing School of Environment and Sustainability by Title
Now showing 1 - 20 of 36
Results Per Page
Sort Options
Item Above- and Below-Ground Carbon Sequestration in Shelterbelt Trees in Canada: A Review(MDPI, 2019) Mayrinck, Rafaella; Laroque, Colin; Amichev, Beyhan; Rees, Ken VanShelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.Item Applying a two-dimensional hydrodynamic model to estimate fish stranding risk downstream from a hydropeaking hydroelectric station(Wiley Online Library, 2023) Glowa, Sarah; Kneale, Andrea; Watkinson, Douglas A.; Ghamry, Haitham K.; Enders, Eva; Jardine, TimothyFish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects hydropeaking has on fish communities is challenging because fish stranding is dependent on riverscape features, such as topography, bathymetry and substrate. By using a combination of physical habitat assessments, hydrodynamic modelling and empirical data on fish stranding, we estimated the number of fish stranding over a 5-month period for three model years in a large Prairie river. More specifically, we modelled how many fish potentially stranded during the years 2019, 2020 and 2021 across a 16 km study reached downstream from E.B. Campbell Hydroelectric Station on the Saskatchewan River, Canada. Fish stranding densities calculated from data collected through remote photography and transect monitoring in 2021 were applied to the daily area subject to drying determined by the River2D hydrodynamic model. The cumulative area subject to change was 90.05, 53.02 and 80.74 km2 for years 2019, 2020 and 2021, respectively, from June to October. The highest number of stranded fish was estimated for the year 2021, where estimates ranged from 89,800 to 1,638,000 individuals based on remote photography and transect monitoring fish stranding densities, respectively, 157 to 2,856 fish stranded per hectare. Our approach of estimating fish stranding on a large scale allows for a greater understanding of the impact hydropeaking has on fish communities and can be applied to other riverscapes threatened by hydropeaking.Fish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects hydropeaking has on fish communities is challenging because fish stranding is dependent on riverscape features, such as topography, bathymetry and substrate. By using a combination of physical habitat assessments, hydrodynamic modelling and empirical data on fish stranding, we estimated the number of fish stranding over a 5-month period for three model years in a large Prairie river. More specifically, we modelled how many fish potentially stranded during the years 2019, 2020 and 2021 across a 16 km study reached downstream from E.B. Campbell Hydroelectric Station on the Saskatchewan River, Canada. Fish stranding densities calculated from data collected through remote photography and transect monitoring in 2021 were applied to the daily area subject to drying determined by the River2D hydrodynamic model. The cumulative area subject to change was 90.05, 53.02 and 80.74 km2 for years 2019, 2020 and 2021, respectively, from June to October. The highest number of stranded fish was estimated for the year 2021, where estimates ranged from 89,800 to 1,638,000 individuals based on remote photography and transect monitoring fish stranding densities, respectively, 157 to 2,856 fish stranded per hectare. Our approach of estimating fish stranding on a large scale allows for a greater understanding of the impact hydropeaking has on fish communities and can be applied to other riverscapes threatened by hydropeaking.Item Assessing and Mitigating Ice-Jam Flood Hazards and Risks: A European Perspective(MDPI, 2022) Lindenschmidt, Karl-Erich; Alfredsen, Knut Tore; Carstensen, Dirk; Choryński, Adam; Gustafsson, David; Halicki, Michał; Hentschel, Bernd; Karjalainen, Niina; Kögel, Michael; Kolerski, Tomasz; Korna´s-Dynia, Marika; Kubicki, Michał; Kundzewicz, Zbigniew; Lauschke, Cornelia; Marszelewski, Włodzimierz; Möldner, Fabian; Näslund-Landenmark, Barbro; Niedzielski, Tomasz; Parjanne, Antti; Pawłowski, Bogusław; Pińskwar, Iwona; Remisz, Joanna; Renner, Maik; Roers, Michael; Rybacki, Maksymilian; Szałkiewicz, Ewelina; Szydłowski, Michał; Walusiak, Grzegorz; Witek, Matylda Katarzyna; Zagata, Mateusz; Zdralewicz, MaciejThe assessment and mapping of riverine flood hazards and risks is recognized by many countries as an important tool for characterizing floods and developing flood management plans. Often, however, these management plans give attention primarily to open-water floods, with ice-jam floods being mostly an afterthought once these plans have been drafted. In some Nordic regions, ice-jam floods can be more severe than open-water floods, with floodwater levels of ice-jam floods often exceeding levels of open-water floods for the same return periods. Hence, it is imperative that flooding due to river ice processes be considered in flood management plans. This also pertains to European member states who are required to submit renewed flood management plans every six years to the European governance authorities. On 19 and 20 October 2022, a workshop entitled “Assessing and mitigating ice-jam flood hazard and risk” was hosted in Pozna´ n, Poland to explore the necessity of incorporating ice-jam flood hazard and risk assessments in the European Union’s Flood Directive. The presentations given at the workshop provided a good overview of flood risk assessments in Europe and how they may change due to the climate in the future. Perspectives from Norway, Sweden, Finland, Germany, and Poland were presented. Mitigation measures, particularly the artificial breakage of river ice covers and ice-jam flood forecasting, were shared. Advances in ice processes were also presented at the workshop, including state-of-the-art developments in tracking ice-floe velocities using particle tracking velocimetry, characterizing hanging dam ice, designing new ice-control structures, detecting, and monitoring river ice covers using composite imagery from both radar and optical satellite sensors, and calculating ice-jam flood hazards using a stochastic modelling approach.Item Assessing the fate of brown trout (Salmo trutta) environmental DNA in a natural stream using a sensitive and specific dual-labelled probe(Elsevier, 2019) Deutschmann, Björn; Müller, Anne-Kathrin; Hollert, Henner; Brinkmann, MarkusEnvironmental DNA (eDNA) analysis in the aquatic environment has emerged as a promising tool for diagnosis of the ecological status in comprehensive monitoring strategies and might become useful in context of the European Water Framework Directive (WFD) and other legislations to derive stressor-specific indicators. Despite many studies having made significant progress for the future use of eDNA in terms of ecosystem composition and detection of invasive/rare species in inland waters, much remains unknown about the transport and fate of eDNA under natural environmental conditions. We designed a specific dual-labelled probe to detect brown trout (Salmo trutta, L.) eDNA and used the probe to describe the fate of eDNA released from an aquaculture facility into the low mountain range stream Wehebach, Germany. The probe was shown to be specific to brown trout, as ponds housing rainbow trout (Oncorhynchus mykiss) did not test positive. Even though we observed different strengths of eDNA signals for three ponds containing different brown trout quantities, no significant correlation was found between biomass (kg/L) and eDNA quantity. Our results indicate that the release of DNA from brown trout might be life stage and/or age-dependent. The effluents of the aquaculture facility were a source of high levels of eDNA which resulted in the greatest abundance of brown trout eDNA directly downstream of the facility. Despite the natural occurrence of brown trout in the Wehebach, as shown by ecological investigations conducted by authorities of the federal state of North Rhine-Westphalia (Germany) and personal observations, we observed a significant decrease of relative abundance of eDNA in the Wehebach within the first 1.5 km downstream of the aquaculture. Our results suggest that concentrations of eDNA in running waters rapidly decrease under natural conditions due to dilution and degradation processes, which might have important implications for the utility of eDNA in environmental research.Item Bias-Corrected RADARSAT-2 Soil Moisture Dynamics Reveal Discharge Hysteresis at An Agricultural Watershed(MDPI, 2023) Lee, Ju Hyoung; Lindenschmidt, Karl-ErichSatellites are designed to monitor geospatial data over large areas at a catchment scale. However, most of satellite validation works are conducted at local point scales with a lack of spatial representativeness. Although upscaling them with a spatial average of several point data collected in the field, it is almost impossible to reorganize backscattering responses at pixel scales. Considering the influence of soil storage on watershed streamflow, we thus suggested watershed-scale hydrological validation. In addition, to overcome the limitations of backscattering models that are widely used for C-band Synthetic Aperture Radar (SAR) soil moisture but applied to bare soils only, in this study, RADARSAT-2 soil moisture was stochastically retrieved to correct vegetation effects arising from agricultural lands. Roughness-corrected soil moisture retrievals were assessed at various spatial scales over the Brightwater Creek basin (land cover: crop lands, gross drainage area: 1540 km2) in Saskatchewan, Canada. At the point scale, local station data showed that the Root Mean Square Errors (RMSEs), Unbiased RMSEs (ubRMSEs) and biases of Radarsat-2 were 0.06~0.09 m3/m3, 0.04~0.08 m3/m3 and 0.01~0.05 m3/m3, respectively, while 1 km Soil Moisture Active Passive (SMAP) showed underestimation at RMSEs of 0.1~0.22 m3/m3 and biases of 0.036~0.2080 m3/m3. Although SMAP soil moisture better distinguished the contributing area at the catchment scale, Radarsat-2 soil moisture showed a better discharge hysteresis. A reliable estimation of the soil storage dynamics is more important for discharge forecasting than a static classification of contributing and noncontributing areas.Item Bioactivation of Quinolines in a Recombinant Estrogen Receptor Transactivation Assay Is Catalyzed by N-Methyltransferases(ACS Publications, 2019) Brinkmann, Markus; Barz, Bogdan; Carrière, Danielle; Velki, Mirna; Smith, Kilian; Meyer-Alert, Henriette; Müller, Yvonne; Thalmann, Beat; Bluhm, Kersti; Schiwy, Sabrina; Hotz, Simone; Salowsky, Helena; Tiehm, Andreas; Hecker, Markus; Hollert, HennerHydroxylation of polyaromatic compounds through cytochromes P450 (CYPs) is known to result in potentially estrogenic transformation products. Recently, there has been an increasing awareness of the importance of alternative pathways such as aldehyde oxidases (AOX) or N-methyltransferases (NMT) in bioactivation of small molecules, particularly N-heterocycles. Therefore, this study investigated the biotransformation and activity of methylated quinolines, a class of environmentally relevant N-heterocycles that are no native ligands of the estrogen receptor (ER), in the estrogen-responsive cell line ERα CALUX. We found that this widely used cell line overexpresses AOXs and NMTs while having low expression of CYP enzymes. Exposure of ERα CALUX cells to quinolines resulted in estrogenic effects, which could be mitigated using an inhibitor of AOX/NMTs. No such mitigation occurred after coexposure to a CYP1A inhibitor. A number of N-methylated but no hydroxylated transformation products were detected using liquid chromatography–mass spectrometry, which indicated that biotransformations to estrogenic metabolites were likely catalyzed by NMTs. Compared to the natural ER ligand 17β-estradiol, the products formed during the metabolization of quinolines were weak to moderate agonists of the human ERα. Our findings have potential implications for the risk assessment of these compounds and indicate that care must be taken when using in vitro estrogenicity assays, for example, ERα CALUX, for the characterization of N-heterocycles or environmental samples that may contain them.Item Blooms and flows: Effects of variable hydrology and management on reservoir water quality(Wiley Open Access (Commercial Publisher); Ecological Society of America (Society Publisher), 2023) Painter, Kristin; Venkiteswaran, Jason J.; Baulch, HelenFlow management has the potential to significantly affect ecosystem condition. Shallow lakes in arid regions are especially susceptible to flow management changes, which can have important implications for the formation of cyanobacterial blooms. Here, we reveal water quality shifts associated with changing source water inflow management. Using in situ monitoring data, we studied a seven-year time span during which inflows to a shallow, eutrophic drinking water reservoir transitioned from primarily natural landscape runoff (2014–2015) to managed flows from a larger upstream reservoir (Lake Diefenbaker; 2016–2020) and identified significant changes in cyanobacteria (as phycocyanin) using generalized additive models to classify cyanobacterial bloom formation. We then connected changes in water source with shifts in chemistry and the occurrence of cyanobacterial blooms using principal components analysis. Phycocyanin was greater in years with managed reservoir inflow from a mesotrophic upstream reservoir (2016–2020), but dissolved organic matter (DOM) and specific conductivity, important determinants of drinking water quality, were greatest in years when landscape runoff dominated lake water source (2014–2015). Most notably, despite changing rapidly, it took multiple years for lake water to return to a consistent and reduced level of DOM after managed inflows from the upstream reservoir were resumed, an observation that underscores how resilience may be hindered by weak resistance to change and slow recovery. Environmental flows for water quality are rarely defined, yet we show that trade-offs exist between poor water quality via elevated conductivity and DOM and higher bloom risk, depending on water source. Our work highlights the importance of source water quality, not just quantity, to water security, and our findings have important implications for water managers who must protect ecosystem services while adapting to projected hydroclimatic change.Item Comparative analysis of cadmium uptake and distribution in contrasting canadian flax cultivars(BMC, 2020) House, Megan; Young, Lester W.; Liu, Xia; Liber, Karsten; Diederichsen, Axel; Booker, HelenObjective: Humans consume low quantities of cadmium (Cd), a non-nutritive and potentially toxic heavy metal, primarily via the dietary intake of grains. A trial experiment was conducted to investigate physiological and developmental differences in Cd content in four flax cultivars (‘AC Emerson’, ‘Flanders’, ‘CDC Bethune’, and ‘AC McDuff’) as part of a study to provide information that will assist in the breeding of low Cd-accumulating flax cultivars. Our objective was to identify varietal differences in the uptake and distribution of Cd in various tissues among flax cultivars grown in naturally Cd-containing soil in a controlled environment. Results: Cadmium concentration was dependent on genotype, developmental stage, and tissue type, as well as their interaction. Cadmium concentration was higher in roots and leaves, relative to all other tissues, with a general trend of decreasing Cd content over time within leaves and stems. Notably, the concentration of Cd was higher in ‘AC Emerson’ relative to ‘AC McDuff’ across tissues and ages, including the seeds, while the concentration of ‘Flanders’ was higher than in ‘AC McDuff’ in seeds and other reproductive organs but similar in roots and leaves. The results suggest varietal differences in the mechanisms that determine Cd content in seeds.Item Development of an ice-jam flood forecasting modelling framework for freeze-up/winter breakup(IWA Publishing, 2023) Das, Apurba; Budhathoki, Sujata; Lindenschmidt, Karl-ErichRiver ice-jams can create severe flooding along many rivers in cold regions. While ice-jams often form during the spring breakup, the midwinter breakup can cause ice-jamming and flooding. Although many studies have already been focused on forecasting spring ice-jam flooding, studies related to forecasting mid-winter breakup jamming and flooding severity are sparse. The main purpose of this research is to develop a stochastic framework to forecast the severity of mid-winter ice-jam flooding along the transborder (New Brunswick/Maine) Saint John River of North America. A combination of hydrological (MESH) and hydraulic model (RIVICE) simulations was applied to develop the stochastic framework. A mid-winter breakup along the river that occurred in 2018 has been hindcasted as a case study. The result shows that the modelling framework can capture the real-time ice-jam severity. The results of this research will help to improve the capacity of ice-jam flood management in cold regions.Item Dietary shifts may underpin the recovery of a large carnivore population(Biology Letters, 2022) Campbell, Mariana A.; Udyawer, Vinay; Jardine, Timothy; Fukuda, Yusuke; Kopf, R. Keller; Bunn, Stuart; Campbell, HamishSupporting the recovery of large carnivores is a popular yet challenging endeavour. Estuarine crocodiles in Australia are a large carnivore conservation success story, with the population having extensively recovered from past heavy exploitation. Here, we explored if dietary changes had accompanied this large population recovery by comparing the isotopes δ13C and δ15N in bones of crocodiles sampled 40 to 55 years ago (small population) with bones from contemporary individuals (large population). We found that δ13C and δ15N values were significantly lower in contemporary crocodiles than in the historical cohort, inferring a shift in prey preference away from marine and into terrestrial food webs. We propose that an increase in intraspecific competition within the recovering crocodile population, alongside an increased abundance of feral ungulates occupying the floodplains, may have resulted in the crocodile population shifting to feed predominantly upon terrestrial food sources. The number of feral pigs consumed to sustain and grow crocodile biomass may help suppress pig population growth and increase the flow of terrestrially derived nutrients into aquatic ecosystems. The study highlights the significance of prey availability in contributing to large carnivore population recovery.Item Differential Controls of Greenhouse Gas (CO2, CH4, and N2O) Concentrations in Natural and Constructed Agricultural Waterbodies on the Northern Great Plains(American Geophysical Union (Client Organisation), Wiley (Commercial Publisher), 2023) Jensen, Sydney; Webb, Jackie; Simpson, Gavin; Baulch, Helen; Leavitt, Peter; Finlay, KerriInland waters are hotspots of greenhouse gas (GHG) cycling, with small water bodies particularly active in the production and consumption of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). However, wetland ponds are being replaced rapidly by small constructed reservoirs in agricultural regions, yet it is unclear whether these two water body types exhibit similar physical, chemical, and environmental controls of GHG content and fluxes. Here, we compared the content and regulatory mechanisms of all three major GHGs in 20 pairs of natural wetland ponds and constructed reservoirs in Canada's largest agricultural region. Carbon dioxide content was associated primarily with metabolic indicators in both water body types; however, primary production was paramount in reservoirs, and heterotrophic metabolism a stronger correlate in wetland ponds. Methane concentrations were correlated positively with eutrophication of the reservoirs alone, while competitive inhibition by sulfur-reducing bacteria may have limited CH4 in both waterbody types. Contrary to expectations, N2O was undersaturated in both water body types, with wetlands being a significantly stronger and more widespread N2O sink. Varying regulatory processes are attributed to differences in age, depth, morphology, and water-column circulation between water body types. These results suggest that natural and constructed water bodies should be modeled separately in regional GHG budgets.Item Ecotoxicity of NSO-heterocycles (NSO-HET) and short-chained alkyl phenols (SCAP) commonly detected in contaminated groundwater(Society of Environmental Toxicology and Chemistry, 2019) Brinkmann, Markus; Schneider, Anna-Lena; Bluhm, Kerstin; Schiwy, Sabrina; Lehmann, Gunnar; Deutschmann, Björn; Müller, Axel; Tiehm, Andreas; Hollert, HennerNitrogen, sulfur, or oxygen heterocyclic aromatic hydrocarbons (NSO-HETs) and short-chained alkyl phenols (SCAPs) are commonly detected in groundwater at contaminated sites and in the surrounding environment. It is now scientific consensus that these chemicals pose a risk to human and ecosystem health. However, toxicity data are comparably fragmentary, and only few studies have addressed the ecotoxicity of NSO-HETs and SCAPs in a systematic and comparative fashion. To overcome this shortcoming, we tested 18 SCAPs, 16 NSO-HETs, as well as the homocyclic hydrocarbons indane and indene in the Microtox® assay with Aliivibrio fischeri, the growth inhibition test with Desmodesmus subspicatus, the acute immobilization assay with Daphnia magna, as well as the fish embryo toxicity test with embryos of the zebrafish (Danio rerio). Because of the physicochemical properties of the tested chemicals (limited water solubility, volatility, and sorption to test vessels), actual exposure concentrations in test media and their dissipation over time were analytically quantified by means of gas chromatography with mass spectrometry. Analytically corrected effect levels (median effect and lethal concentrations) ranged from 0.017 to 180 mg L–1, underlining the environmental relevance of some NSO-HETs and SCAPs. Para-substituted phenols showed the overall greatest toxicities in all 4 toxicity tests. We provide, for the first time, a complete high-quality data set in support of better environmental risk assessments of these chemicals.Item Effects of ontogeny and invasive crayfish on feeding ecology and mercury concentrations of predatory fishes.(2019) Prestie, Kate; Phillips, Iain; Chivers, Doug; Jardine, TimItem Evaluating the risk of fish stranding due to hydropeaking in a large continental river(Wiley Online Library, 2022) Glowa, Sarah; Watkinson, Douglas A.; Jardine, Timothy; Enders, EvaWith the continuous development of hydropower on a global scale, stranding of freshwater fishes is of growing concern, and an understanding of the mechanisms and variables affecting fish stranding in hydropeaking rivers is urgently needed. In particular, a methodology is required to identify the magnitude and timing at which fish stranding occurs in relation to environmental conditions. Here, we studied fish stranding in three reaches downstream of a hydropeaking generation station in the Saskatchewan River, Saskatchewan, Canada, using an innovative remote photography approach with 45 trail cameras and traditional transect monitoring, conducting 323 transects. We observed that juvenile sport and commercial fish species are stranding at a higher proportion than small bodied fish species. The remote photography approach provided more precise fish stranding timing and associated the environmental and physical conditions with a given stranding event, but captured fewer fish and only rarely allowed species identification. The comparison of the two methodologies resulted in similar stranded fish densities, but the remote photography allowed for continuous observations whereas the transect monitoring was limited by the observer availability in the field. Remote photography allowed for additional information on the scavenging of stranded fish, with scavenging occurring on average within 240 minutes of the fish being stranded. The probability of fish stranding increased significantly with increasing water temperature and substrate particle size resulted in greater stranding on finer substrates. Our findings have important implications for hydroelectric flow management by introducing an innovative, standardized method to study the effects of hydropeaking events on fish stranding that can be applied to increase our understanding of the impacts of hydropeaking on fish communities.Item Extension and refinement of a stochastic modelling approach to assess ice-jam flood hazard(IWA Publishing, 2023) Lindenschmidt, Karl-ErichIn the spring of 2020, the town of Fort McMurray, which lies on the banks of the Athabasca River, experienced an ice-jam flood event that was the most severe in approximately 60 years. In order to capture the severity of the event, a stochastic modelling approach, previously developed by the author for ice-jam flood forecasting, has been refined for ice-jam flood hazard and risk assessments and ice-jam mitigation feasibility studies, which is the subject of this paper. Scenarios of artificial breakage demonstrate the applicability of the revised modelling framework.Item Frazil ice events: Assessing what to expect in the future(IWA Publishing, 2023) Barrette, Paul; Lindenschmidt, Karl-ErichThis article addresses the question: What is expected from frazil ice activity in rivers, taking into account the changing climate? It begins with an overview of what frazil ice is and what is required for the occurrence of frazil ice events, namely a supercooled water column. Methodologies to anticipate frazil ice events in the short term are based on air temperature and water discharge, underlining the significance of these two parameters for any predictive methods. Longer-term approaches, calibrated against past events (hindcasting), are used to anticipate frazil ice activity into the future, with indicators such as frazil ice risk, water temperature and frazil volume. Any of these approaches could conceivably be applied to frazil-prone river stretches. To assess climate impact, each location should be treated separately. River ice dynamics can lead to the formation of a hanging dam, a frequent outcome of frazil ice generation in the early winter, causing flow restriction. Flood modeling and forecasting capabilities have been developed and implemented for operational use. More frequent mid-winter breakups are expected to extend the occurrence of frazil ice events into the winter months – the prediction of these will require climate model output to adequately capture month-to-month variability.Item Green Spaces with Fewer People Improve Self-Reported Affective Experience and Mood(MDPI, 2023) Honey-Rosés, Jordi; Zapata, OscarCalm and quiet green spaces provide health benefits for urban residents. Yet as cities become more densely populated, increasing public users to green spaces may reduce or moderate these benefits. We examine how increased pedestrian density in a green street changes self-reported wellbeing. We use a between subject experimental design that added public users as confederates in randomly selected periods over three weeks. We collect data on mood and affective response from pedestrians moving through the green street (n = 504), with and without our public user treatment in randomly selected periods. Mood and affective response are improved when experiencing the green street with fewer people. We find that an increased number of public users in the green space has a negative effect on mood, especially among women. We provide experimental evidence that self-reported wellbeing in urban green spaces depends on social context, and that there are gender inequities associated with changes in affective response. Although we only measure immediate impacts, our results imply that the health benefits of green spaces may be limited by the total number of users. This research contributes additional evidence that greener cities are also healthier cities, but that the benefits may not be equally shared between women and men and will depend on the social context of use.Item High Rates of Mercury Biomagnification in Fish from Amazonian Floodplain-Lake Food Webs(Science of the Total Environment, 4/11/2022) Nyholt, Kelsey; Jardine, Timothy; Villamarin, Francisco; Jacobi, Cristina Mariana; Hawes, Joseph; Campos-Silva, Joao V.; Srayko, Stephen; Magnusson, WilliamDespite a global phase out of some point sources, mercury (Hg) remains elevated in aquatic food webs, posing health risks for fish-eating consumers. Many tropical regions have fast growing organisms, potentially short food chains, and few industrial point sources, suggesting low Hg baselines and low rates of trophic magnification with limited risk to people. Nevertheless, insufficient work on food-web Hg has been undertaken in the tropics and fish consumption is high in some regions. We studied Hg concentrations in fishes from floodplain lakes of the Juruá River, Amazonas, Brazil with three objectives: 1) determine rates of Hg trophic magnification, 2) assess whether Hg concentrations are high enough to impact humans eating fish, and 3) determine whether there are seasonal differences in fish Hg concentrations. A total of 380 fish-muscle samples were collected from 12 floodplain lakes during the low-water (September 2018) and falling-water (June 2019) seasons and analyzed for total Hg and stable nitrogen (N) isotopes. The average trophic magnification factor (increase per trophic level) was 10.1 in the low-water season and 5.4 in the falling-water season, both well above the global average for freshwaters. This high rate of trophic magnification, coupled with higher-than-expected Hg concentrations in herbivorous species, led to high concentrations (up to 17.6 mg/kg dry weight) in predatory pirarucu and piranha. Nearly 70% of all samples had Hg concentrations above the recommended human-consumption guidelines. Average concentrations were 42% higher in the dry season than the wet season, but differences varied by species. Since Hg concentrations are higher than expected and fish consumption in this region is high, future research should focus on Hg exposure for human populations here and in other tropical-rainforest regions, even in the absence of local point sources of Hg.Item High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach(Published by Copernicus Publications on behalf of the European Geosciences Union, 2019) Li, Yanping; Li, Zhenhua; Zhang, Zhe; Chen, Liang; Kurkute, Sopan; Scaff, Lucia; Pan, XicaiClimate change poses great risks to western Canada’s ecosystem and socioeconomical development. To assess these hydroclimatic risks under high-end emission scenario RCP8.5, this study used theWeather Research Forecasting (WRF) model at a convection-permitting (CP) 4 km resolution to dynamically downscale the mean projection of a 19-member CMIP5 ensemble by the end of the 21st century. The CP simulations include a retrospective simulation (CTL, 2000–2015) for verification forced by ERA-Interim and a pseudo-global warming (PGW) for climate change projection forced with climate change forcing (2071–2100 to 1976–2005) from CMIP5 ensemble added on ERA-Interim. The retrospective WRF-CTL’s surface air temperature simulation was evaluated against Canadian daily analysis ANUSPLIN, showing good agreements in the geographical distribution with cold biases east of the Canadian Rockies, especially in spring. WRF-CTL captures the main pattern of observed precipitation distribution from CaPA and ANUSPLIN but shows a wet bias near the British Columbia coast in winter and over the immediate region on the lee side of the Canadian Rockies. The WRF-PGW simulation shows significant warming relative to CTL, especially over the polar region in the northeast during the cold season, and in daily minimum temperature. Precipitation changes in PGW over CTL vary with the seasons: in spring and late autumn precipitation increases in most areas, whereas in summer in the Saskatchewan River basin and southern Canadian Prairies, the precipitation change is negligible or decreased slightly. With almost no increase in precipitation and much more evapotranspiration in the future, the water availability during the growing season will be challenging for the Canadian Prairies. The WRF-PGW projected warming is less than that by the CMIP5 ensemble in all seasons. The CMIP5 ensemble projects a 10 %–20% decrease in summer precipitation over the Canadian Prairies and generally agrees with WRFPGW except for regions with significant terrain. This difference may be due to the much higher resolution of WRF being able to more faithfully represent small-scale summer convection and orographic lifting due to steep terrain. WRF-PGW shows an increase in high-intensity precipitation events and shifts the distribution of precipitation events toward more extremely intensive events in all seasons. Due to this shift in precipitation intensity to the higher end in the PGW simulation, the seemingly moderate increase in the total amount of precipitation in summer east of the Canadian Rockies may underestimate the increase in flooding risk and water shortage for agriculture. The change in the probability distribution of precipitation intensity also calls for innovative biascorrection methods to be developed for the application of the dataset when bias correction is required. High-quality meteorological observation over the region is needed for both forcing high-resolution climate simulation and conducting verification. The high-resolution downscaled climate simulations provide abundant opportunities both for investigating localscale atmospheric dynamics and for studying climate impacts on hydrology, agriculture, and ecosystems.Item Looking back - looking forward: A novel multi-time slice weight-of-evidence approach for defining reference conditions to assess the impact of human activities on lake systems(Elsevier, 2018) Hollert, Henner; Crawford, Sarah E.; Brack, Werner; Brinkmann, Markus; Fischer, Elske; Hartmann, Kai; Keiter, Steffen; Ottermanns, Richard; Ouellet, Jacob; Rinke, Karsten; Roß-Nickoll, Martina; Schäffer, Andreas; Schüth, Christoph; Schulze, Tobias; Schwarz, Anja; Seiler, Thomas-Benjamin; Wessels, Martin; Hinderer, Matthias; Schwalb, AntjeLake ecosystems are sensitive recorders of environmental changes that provide continuous archives at annual to decadal resolution over thousands of years. The systematic investigation of land use changes and emission of pollutants archived in Holocene lake sediments as well as the reconstruction of contamination, background conditions, and sensitivity of lake systems offer an ideal opportunity to study environmental dynamics and consequences of anthropogenic impact that increasingly pose risks to human well-being. This paper discusses the use of sediment and other lines of evidence in providing a record of historical and current contamination in lake ecosystems. We present a novel approach to investigate impacts from human activities using chemical-analytical, bioanalytical, ecological, paleolimnological, paleoecotoxicological, archeological as well as modeling techniques. This multi-time slice weight-of-evidence (WOE) approach will generate knowledge on conditions prior to anthropogenic influence and provide knowledge to (i) create a better understanding of the effects of anthropogenic disturbances on biodiversity, (ii) assess water quality by using quantitative data on historical pollution and persistence of pollutants archived over thousands of years in sediments, and (iii) define environmental threshold values using modeling methods. This technique may be applied in order to gain insights into reference conditions of surface and ground waters in catchments with a long history of land use and human impact, which is still a major need that is currently not yet addressed within the context of the European Water Framework Directive.